Zhenjun Ming
Beijing Institute of Technology,
Beijing 100081, China

Anand Balu Nellippallil
School of Aerospace and Mechanical
Engineering,

University of Oklahoma,

Norman 73019, OK

Yan Yan
Beijing Institute of Technology,
Beijing 100081, China

Guoxin Wang'

School of Mechanical Engineering,
Institute for Industrial Enginegring,
Beijing Institute of Technology,
No. 5 Zhongguancun South Street,
Haidian District,

Beijing 100081, China

e-mail: wangguoxin@bit.edu.cn

Chung Hyun Goh
Department of Mechanical Engineering,
The University of Texas at Tyler,

Tyler 75799, TX

Janet K. Allen

School of Industrial and Systems Engineering,
University of Oklahoma,

Norman 73019, 0K

PDSIDES—A Knowledge-Based
Platform for Decision Support
in the Design of Engineering
Systems

We hypothesize that by providing decision support for designers we can speed up the
design process and facilitate the creation of quality cost-effective designs. One of the
challenges in providing design decision support is that the decision workflows embody
various degrees of complexity due to the inherent complexity embodied in engineering
systems. To tackle this, we propose a knowledge-based Platform for Decision Support in
the Design of Engineering Systems (PDSIDES). PDSIDES is built on our earlier works
that are anchored in modeling decision-related knowledge with templates using ontolo-
gies to facilitate execution and reuse. In this paper, we extend the ontological decision
templates to a computational platform that provides knowledge-based decision support
for three types of users, namely, template creators, template editors, and template imple-
menters, in original design, adaptive design, and variant design, respectively. The effi-
cacy of PDSIDES is demonstrated using a hot rod rolling system (HRRS) design
example. [DOI: 10.1115/1.4040461]

Keywords: platform, engineering design, knowledge, decision making, decision support
problem, ontology

Farrokh Mistree

School of Aerospace and Mechanical
Engineering,

University of Oklahoma,

Norman 73019, OK

1 Frame of Reference

Design of engineering systems is increasingly recognized as a
decision-making process [1-4]. We believe that the principal role
of a human designer is to make decisions. Providing decision sup-
port is of critical importance for augmenting this role, by speeding
up the design process and generating quality designs. One of the
challenges in providing decision support in the design of engineer-
ing systems, especially complex systems that are, by definition,
made up of inter-related subsystems [5], arises because of the
complexity embodied in the decision workflows that embody mul-
tiple coupled decisions networked in various degrees of complex-
ity. The networked decision workflows may include different
types of decisions, e.g., selection of design alternatives and
improvement of an alternative considering multiple goals. The
decisions are coupled together due to the dependency existing
among systems and subsystems. The different types of decisions
and their associated dependencies in the decision workflows make
it difficult to provide appropriate decision support.

Decision-making is a knowledge-intensive process, with knowl-
edge playing a significant role in speeding up and affecting deci-
sions. Design knowledge representation for conceptual and
detailed design has been area of interest in knowledge-based

!Corresponding author.

Contributed by the Computers and Information Division of ASME for publication
in the JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING. Manuscript
received June 10, 2017; final manuscript received May 25, 2018; published online
July 3, 2018. Assoc. Editor: Yan Wang.

Journal of Computing and Information Science in Engineering

design and engineering for many decades. However, most of the
works on knowledge representation deal with design in general
(CAD oriented), not in the context of supporting decisions. For
example, Shah and Mantyld [6] introduced the parametric and
feature-based methods, which have specific data structures and
algorithms embedded to facilitate rapid and reusable three-
dimensional geometric model generation. While, the parametric,
feature-based procedure knowledge representations introduced in
Ref. [6] cannot be (at least not directly be) applied to represent the
human decision-making processes in design. Coyne et al. [7] pro-
pose a prototype-centric framework for the development of
knowledge-based design systems. In their framework, prototypes
can be generated, refined, and adapted to create novel designs.
However, the design decision-making processes are not addressed
in their work. Finger and Dixon [8] reviewed many descriptive,
prescriptive, and computer-based models of design processes in
the late 1980s with the aim to create intelligent CAD expert sys-
tems. Human decision-making process is not emphasized and well
analyzed but just lightly mentioned as “concept selection” with no
detailed information in their review. Verhagen et al. [9] analyzed
a total of 50 research contributions in the area of knowledge-
based engineering (KBE), pointed out the challenges, and sug-
gested some future research opportunities in the field. However,
the goal of the total 50 KBE research contributions, as stated by
the authors, is to automate the product design and development
process, but not support designers making better decisions. Simi-
larly, Rocca [10] provided an extensive review of KBE from a
language-based technological perspective, the aim being to

DECEMBER 2018, Vol. 18 / 041001-1

Copyright © 2018 by ASME

Downloaded From: http://asmedigitalcollection.asme.org/ on 07/05/2018 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use

understand what the technological fundamentals of KBE are and
how it can be used to automate large portions of the design pro-
cess. One thing in this paper that is related to decision-making is
that KBE is used to develop multimodel generators in MDO, but
the compromise decision (i.e., the tradeoff) among multidiscipli-
nary models is not discussed. Jakiela and Papalambros [11] from
University of Michigan introduced a prototype “intelligent” CAD
system, in which decision-making process during the conceptual
design is programmed using production rules to automatically
generate three-dimensional models. While this system provides
knowledge-based automatic decision-making in design, the limita-
tion is that it only accounts for geometrical modeling. Sapuan [12]
presented a knowledge-based system for material selection. How-
ever, the decision process and associated knowledge representa-
tion language are domain specific and thus not reusable and
extensible.

Despite the fact that many knowledge-based systems have been
developed to support engineering design, the challenge of support-
ing the decision workflow in the design of complex engineering sys-
tems is not yet well addressed, mainly, for the following reasons:

(1) Lack of both reusable and executable decision knowledge
representation schemes. Knowledge reusability is critical
for adaptive and variant design wherein only a small por-
tion of the original decision workflows needs to change
while the rest remains the same and can be reused. Some
authors have proposed to represent decision knowledge as
ontologies (e.g., Ref. [13]), but they mainly focus on cap-
turing the semantic information of design decisions while
failing to represent the execution process information,
which is necessary for effecting new decisions, especially
in a computational environment whereby some degree of
automation is realized.

(2) Lack of a classification of users for decision support. The
needs of designers for decision support vary according to
how much novelty is involved in the design and how much
knowledge they have about the design process. For exam-
ple, an expert has much knowledge about design and can
perform the decision-making process independently; thus,
the support this designer needs from the computer system
is very different from a novice designer who only has the
basic knowledge about design and needs to get most of the
knowledge from the system. Very few of knowledge-based
systems recognized this difference and provided appropri-
ate decision support.

To address the aforementioned needs, we propose a knowledge-
based Platform for Decision Support in the Design of Engineering
Systems (PDSIDES). The new contributions embodied in this
paper are summarized as follows:

e We integrate the decision-related knowledge that is modeled
as decision support problem (DSP) templates and represented
using ontologies in our earlier works [14—16] into a computa-
tional platform (PDSIDES) to facilitate extensive reuse and
execution. Our earlier works are about information model-
ing; this paper is about platformization.

e We define three types of users, namely, template creators,
template editors, and template implementers, who perform
original design, adaptive design, and variant design respec-
tively in PDSIDES.

e We provide customized decision support for human template
creators, template editors, and template implementers during
their design of engineering systems in PDSIDES.

Overview. The paper is organized as follows: In Sec. 2, we
introduce the primary constructs used in PDSIDES by referencing
our previous work to provide the context. In Sec. 3, we describe
the design of PDSIDES, including platform overview, users and
working scenarios, knowledge-based decision support. The tech-
nical implementation of PDSIDES is introduced in Sec. 4. In Sec.
5, we illustrate the efficacy of PDSIDES using a hot rod rolling

041001-2 / Vol. 18, DECEMBER 2018

system (HRRS) design example. In Sec. 6, we offer some closing
remarks and enumerate future research opportunities.

2 Primary Constructs

2.1 Decision Support Problem. Platform for decision sup-
port in the design of engineering systems is designed from a
decision-based design (DBD) perspective, wherein decisions serve
as markers to identify the progression of a design from initiation
to implementation to termination [17]. We recognize that the
implementation of DBD can take many forms, such as Ref. [18];
our implementation being the DSP technique [19]. Key to the
DSP Technique is the notion that there are two types of decisions,
namely, selection and compromise, and that a complex design can
be represented by modeling a workflow of compromise and selec-
tion decisions. The selection DSP (sDSP) [20] involves making a
choice among a number of alternatives taking into account a num-
ber of measures of merit or attributes, while the compromise DSP
(cDSP) [21] involves the improvement of an alternative through
modification by making a trade-off among multiple design objec-
tives. The sDSP and the cDSP are two fundamental decision-
making constructs in PDSIDES.

The design of complex systems may require the formulation
and resolution of a series of coupled decisions, in which case the
hierarchical DSP construct based on the sDSP and the ¢DSP is
used as the model to support hierarchical decision-making, for the
detailed mathematical model see Refs. [22] and [23]. Key to the
hierarchical DSP is the combination of all the DSPs (including
sDSPs and cDSPs) simultaneously by reformulating the DSPs into
a single ¢cDSP. Hierarchical DSPs are generally multiobjective,
nonlinear, mixed discrete-continuous problems. A tailored compu-
tational system known as DSIDES [24] is integrated into
PDSIDES to solve such problems.

2.2 Decision Template. One of our primary goals in design-
ing PDSIDES is that designers can rapidly create decision models
for the specific design problems they have by using the DSP con-
structs, and making decisions, and finally the produced decision
knowledge can be stored and reused by other users for similar
designs. To achieve this goal, the DSPs are represented as compu-
tational decision templates in PDSIDES. Decision templates, orig-
inally proposed by Panchal et al. [25], make it possible to model
the compromise DSP so that the template is reusable and com-
puter interpretable. We extend the idea to model the selection
DSP and hierarchical DSP as templates in our earlier work
[14,15]. Key to the computational DSP templates is the modulari-
zation of the DSP constructs and the separation of declarative and
procedural knowledge, which allows both to be reused across
problems.

In PDSIDES, all the DSP template modules including the sDSP
template modules such as alternatives and attributes, the cDSP
template modules such as constraints, variables, etc. and the hier-
archical DSP template modules are managed in the module repos-
itory, as shown in Fig. 1. It is noted that the sDSP template and
the cDSP template are also defined as a particular type of module
since they comprise the key “building blocks” of a decision hier-
archy and can be linked together using the interface and process
modules; see Ref. [14] for details. Template modules represent
the declarative knowledge in PDSIDES, which embodies problem
specific information and can be reused in the instantiation of DSP
templates (the wired “boards”) to support a designer making
selection, compromise, and hierarchical decisions. The procedural
knowledge denotes how specific information is processed to reach
a decision, and is archived in the templates (the printed “wiring”
between different modules) for the execution of decisions. The
separation of these two types of knowledge makes it fairly easy
for designers to reconfigure existing templates, which is critically
important in adaptive and variant designs where design

Transactions of the ASME

Downloaded From: http://asmedigitalcollection.asme.org/ on 07/05/2018 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use

4 sDSP Template N 4

N/ O\

cDSP Template Hierarchical DSP Template
utilty _ X1 Dovia oy ; i
K e Selection A7 oo, \\®*, Compromise ? L 7
Coupled
Feasible ¢y Decision
Design — Bounds System
H Alternatives e f — Gonsiains Hierarchy ; $DSPory
— S
X2 ’\@sp/ 7
o2
L— Interface
module module |- Process

/

Template

Template

/ /

Template

17

Module Repository

| M Alternatives | |

| M Post-solution Analysis _ |

| 5 , . || |
; onstraints

| Attributes | | : " W Drivers |] Il sDSP Template |

. . ariables i

Il Utility Function		W Analysis] B cDSP Template	
I Ranking		B Parameters	Objectve I	B Interface
Il Evaluation		M Goals B Response		B Process
	Il Preferences]			

Fig. 1

consideration changes and the original decision model needs to be
modified. Template modification is discussed in Sec. 3.

2.3 Ontology. In order to store and reuse the knowledge
archived in the DSP templates in a computational environment,
there needs to be a formal representation scheme. Ontologies are
defined by Gruber [26] as explicit formal specifications of terms
and relations among them are increasingly used for knowledge
modeling in engineering design, such as Refs. [13] and [27]. In
PDSIDES, ontology is used to formally represent the knowledge
(including declarative and procedural knowledge) archived in the
DSP templates. Key elements of an ontology are terms and rela-
tions. Terms represent the components of a domain, which refers
to the modules of the DSP templates in this paper. According to
Li et al. [28], the grain sizes of terms in an ontology are deter-
mined by the consideration of the need for an application or com-
putational complexity. In PDSIDES, to comprehensively capture
the semantics of the DSPs, we introduce some additional terms,
such as coefficient, and utility calculation to the sDSP template
ontology [15] and quantity, function to the cDSP template ontol-
ogy [16]. Relations in an ontology represent the connections of a
term to other terms (e.g., the connecting a goal to a variable using
relation function-of), that provide the context of the terms and
make them easy-to-comprehend and facilitate communication.
The terms and relations in an ontology capture the declarative
knowledge, which is domain-specific, while some attached ele-
ments such as rules, axioms, or Java function calls capture the
procedural knowledge, which is domain-independent. There are
two popular paradigms for ontology formalism, namely, web
ontology language and frame [29]. The frame paradigm is chosen
because it is based on a closed-world assumption wherein every-
thing is prohibited until it is permitted, which is suitable for mod-
eling the highly constrained DSPs. In frame-based ontology,
terms are defined as classes and relations are defined as
slots. With classes and slots, ontologies in PDSIDES are
defined as shown in Fig. 2. On the left-hand side and right-hand
side are the cDSP and the sDSP ontologies respectively, which are
integrated by the hierarchical DSP ontology in the middle for

Journal of Computing and Information Science in Engineering

DSP templates and their associated modules

capturing knowledge related to hierarchical decision workflows.
For detailed specification of the classes and slots, see our
earlier works [14-16]:

The advantages of the use of ontology in PDSIDES are sum-
marized as follows:

e Facilitate knowledge sharing. This is embodied in two
aspects, namely, knowledge sharing among different users in
PDSIDES and knowledge sharing between PDSIDES and
other product lifecycle management platforms. The DSP
ontologies represent the common language used for design
decision-making in PDSIDES, and thus users from different
design disciplines (e.g., thermal, structural, dynamic, etc.)
can easily understand, communicate knowledge such as vari-
ables, goals, and constraints, with each other. Meanwhile,
the explicit, formal specifications of the terms of the DSP
ontologies enable PDSIDES the ability to exchange knowl-
edge with other product lifecycle management platforms
such as product data management systems and simulation-
based analysis systems.

e Facilitate knowledge population. In order for the computa-
tional templates defined in Sec. 2.2 to execute and effect real
decisions, the modules of the templates must be populated
with specific knowledge (or information). The DSP ontolo-
gies are the abstractive representations of the templates,
which is very convenient for instantiating different instances
with specific information.

o Facilitate knowledge retrieval. One of the prerequisites for
the reuse of templates and the associated modules is that they
can be retrieved from the repository (knowledge base) when
needed. The DSP ontologies capture the complex semantic
relationships among the modules and templates, which
allows it to support semantic-based retrieval that can respond
to comprehensive query needs. For detail about semantic
retrieval, see Ref. [30].

e Facilitating consistency maintaining. Modification of the
original templates usually happens in adaptive or variant
design, which may lead to inconsistency of the modified tem-
plates since the arrangement or values of the modules are

DECEMBER 2018, Vol. 18 / 041001-3

Downloaded From: http://asmedigitalcollection.asme.org/ on 07/05/2018 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use

hasPargmeter =
has\lariable hasCongfraint

QUANTITY <
FUNchoﬁ\
s sOf Sucry o q
sucl sOf S \ 9 10
PARAMETER sucg pow?-
4 s
CONSTRAINT Or
VARIABLE
GOAL

COEFFICIRr asCostfieients TUTILITYFUNCTION

hasHunctions

MUTILITYFUNCTION

hasUtility-
[
u-sb te

e‘e“
hasRe
RESPONSE applyfo asBgavior)
drivedffrom DRIVER
PROBLEM BE}{}\VlOR

HisfoRY

ALTERNATIVE

¥
%
¥ &
EVALUATION Qo:@e’“
2 TTRIBUTE
Y, podte T A SSESSMENT
UTILITYCALC Assegsmen
ULATION
IATTRIBUTEA
SSESSMENT

(a) (b)

(c)

Fig.2 Ontologies in PDSIDES: (a) cDSP ontology [16], (b) hierarchical ontology [14], and (c) sDSP ontology [15]

changed. The DSP ontologies support rule-based reasoning
and appropriately handle the inconsistency, which is dis-
cussed in Sec. 3.3.

3 Design of Platform for Decision Support in the
Design of Engineering Systems

Based on the primary constructs introduced in Sec. 2, the design
of Platform PDSIDES is introduced in this section. First, an over-
view of PDSDES is presented, and then the platform users and
their associated working scenarios are defined and described.
Finally, we discuss how knowledge-based decision support is pro-
vided for different types of users.

3.1 Platform Overview. An overview of PDSIDES is illus-
trated in Fig. 3. PDSIDES is divided into three parts: knowledge,
users, and decision-based design. What follows is the description
of the platform from the bottom-up that includes how these three
parts are connected to enable the functionalities.

At the bottom of PDSIDES, decision-related knowledge is
stored in the knowledge base. The knowledge including declara-
tive knowledge such as problem statement, alternatives, attrib-
utes, variables, parameters, and constraints, and procedural
knowledge such as consistency rules and computing codes (for
calculating, e.g., expected utility of a SDSP template) are organ-
ized by a holistic ontology, which is the combination of the three
ontologies shown in Fig. 2. In the middle part are the three types
of users, namely, the template creator, template editor, and tem-
plate implementer, which will be formally defined in Sec. 3.2.
The three types of users embody three different levels of knowl-
edge (represented by the stairs in Fig. 3). The top level is the tem-
plate creator who is responsible for creating the DSP templates,
the middle level is the template editor who is responsible for edit-
ing DSP templates, and the bottom level is the template imple-
menter who is responsible for implementing the DSP templates.
The interactions among the three types of users are a closed loop,
where the template operational guidance is passed downward
from the creator to the editor then to the implementer and the feed-
back of operating the templates is sent upward from the imple-
menter to the editor and then to the creator. The creation, edit, and
implementation of the DSP templates are all facilitated using the
holistic ontology. The top part of PDSIDES is about decision-based
design. In PDSIDES, design is classified into three types, namely,
original design, adaptive design, and variant design; all are realized
from a decision-based perspective using the DSP templates. In

041001-4 / Vol. 18, DECEMBER 2018

!
Decison. —m™ = — —
gas.ed | _ Template |

esign

9 |—~{DT: DT4}>-—[DTn |~ |

-DT2
L == _ _ _ _ _ _ J
B i Rl /i
i a
Implgrnent ee&:""& v‘;?‘
® <
sl N
B (& we
Users) Template
A Creator
Templa y
Edrtor
Template
Implementer, 6“\
Knowledge /
Ontology —————
|

Fig.3 PDSIDES overview

specific design cases, the underlying decision workflow is repre-
sented by networked DSP templates that can be exercised by three
types of users through creating, editing, and implementing.

3.2 Users and Working Scenarios. The definitions of three
types of users are introduced and their associated working scenar-
ios are described in detail in this section.

3.2.1 Template Creator. Template Creators are domain
experts and are responsible for creating DSP templates for original
design that calls for new concepts. Original design usually needs
the working principle of the system to be setup. In PDSIDES, to
do original design template creators, first we need to determine
what type of decision needs to be made since different types of
decisions require different knowledge. For selection decisions,

Transactions of the ASME

Downloaded From: http://asmedigitalcollection.asme.org/ on 07/05/2018 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use

creators need to come up with the alternatives for selection, attrib-
utes to evaluate the alternatives, and utility functions to measure
the performance of the alternatives, etc. For compromise deci-
sions, creators need to identify the variables that represent the fea-
tures of the system, constraints and bounds that confine the
feasible design space, and goals and preferences that determine
the aspiration space etc. For hierarchical decisions, in addition to
the determination of the “nodes” (which may be selection or com-
promise) in the decision workflow, creators also need to identify
the dependency and the associated information flows between dif-
ferent “nodes.” The knowledge can be of the creators’ previous
experience, prediction, or results from simulation analysis, etc.
With this knowledge, template modules are created and assembled
to form decision templates that then are tested and stored for reuse.

3.2.2 Template Editor. Template Editors are senior designers
who have sufficient knowledge and experience in a specific
domain and are responsible for editing (or tailoring) existing deci-
sion templates in adaptive design; this requires the original tem-
plates to be adapted for new applications. Adaptive design stands
for those design cases in which the working principle of the sys-
tem remains the same while some design consideration varies due
to the evolution of the requirements. For example, a pressure ves-
sel may need to be redesigned to adapt to a new goal of minimiz-
ing the economic cost because of the intensive market
competition. In PDSIDES, to perform adaptive design, template
editors need to modify existing DSP templates to reflect the change
of design consideration. For the sDSP templates, the modification
includes adding/removing alternatives and attributes, reconfigura-
tion of the utility functions, etc. For the cDSP templates, the modifi-
cation includes adding/removing variables, constraints, goals, etc.
For the hierarchical DSP templates, modification includes three
aspects: the first is about modifying the modules within the DSP
templates in a decision workflow, the second is about modifying
the number DSP templates (adding/removing sDSP or cDSP tem-
plates), the third is about modifying the arrangement (sequence,
information flow, etc.) of the DSP templates. The editor’s knowl-
edge related to the modification is captured in the newly modified
DSP templates, which are stored and used for new applications.

3.2.3 Template Implementer. Template Implementers are
designers who have basic knowledge and typically little knowl-
edge or interest in the analysis embodied in the template; they are
responsible for executing existing decision templates that result in
variant designs that require only parametric changes to the origi-
nal decision templates. Variant design usually happens when the
values of some original design parameters vary. For example,
assuming that the original material of a pressure vessel is replaced
by some new materials with different density and strength, the val-
ues of parameters density and strength of the original design model
(e.g., the cDSP) need to be updated to reflect the change that will
result in a different dimension of the pressure vessel. In PDSIDES,
to perform variant design template implementers can change the
values of the DSP template parameters including: (1) bounds of the
sDSP attributes or cDSP variables, (2) cDSP parameters and tar-
gets, (3) relative importance of the sDSP attributes and cDSP goals.
With the change of parameters values, Template Implementers can
execute the DSP templates and get variant designs.

It is noted that in PDSIDES, users with access to higher knowl-
edge levels also have the access to perform the operations that are
defined for users of lower knowledge levels. For example, a tem-
plate creator can be an editor or implementer, and an editor can
also be an Implementer. With decisions modeled as DSP tem-
plates and users classified into three types, the process of
decision-based design in PDSIDES is shown in Fig. 4. A user
(e.g., a domain expert) first starts with a problem statement to
describe the design problem he/she is faced with, then searches
PDSIDES for a DSP template to support the design. In PDSIDES,
DSP template searching is a query-based process where a problem
statement (a short text) is used as the input and a documented DSP

Journal of Computing and Information Science in Engineering

Problem
Statement

Search for DSP
Templates —_————— — |
| ® Only Parametric Change!
@ Template Adaption |
NO @ YESG——
YESp
v v y
Create DSP Edit Existing Implement Existing
Templates Templates Templates

Y

P Execute Templates

!

Make Decisions

Fig. 4 Flowchart of decision-based design in PDSIDES

template instance is the output. Both the problem statement and tem-
plate instances are mathematically represented using the bag-of-word
approach [31] during the query process. The similarity between the
problem statement and different template instances is measured by a
cosine coefficient as shown in Eq. (1). As this is not the key focus of
this paper, readers are referred to Ref. [32] for detail.

A xB

sim(A ,E) = m

(€]

A and B are two n-dimensional vectors that represent the word
frequencies for the given problem statement and a specific tem-
plate instance, respectively. It should be noted that the bag-of-
word characterizing the template instance not only includes words
from the textual slots such as “name” and “description,” but also
words from the structural slots such as ‘“variables” and
“constraints,” etc. which will make the instance more comprehen-
sive and easier to be matched. If no DSP template instance is
matched, then a new template needs to be created, to be executed,
and to make the decision. If there exists some template(s), the
designer needs to further determine how much modification needs
to be made to the template. If only a change in the nature of a
parameter is needed, then the designer just resets the parameter
values, executes the template, and makes a decision. If more adap-
tion is needed, then the designer needs to do the editing before
executing the template and make a decision.

3.3 Knowledge-Based Decision Support. The core of
PDSIDES is the ontology that integrates the knowledge to support
the three types of designers, namely, template creators, template
editors, and template implementers. In Fig. 5, we represent how
knowledge-based decision support is provided to the three types
of designers in their associated working scenarios (taking the
c¢DSP templates as an example).

3.3.1 Template Creators. Template creators provide the
vocabulary to them for modeling decisions and capture knowledge
from them. Template creators need a formal language to help
them describe and model the decisions for original design. The
DSP ontologies in PDSIDES can provide them with the vocabu-
lary to model their decisions. For example, The term variable is
defined as a Class with several slots including upper bound,
lower bound, unit, value, etc., which will help specify the module

DECEMBER 2018, Vol. 18 / 041001-5

Downloaded From: http://asmedigitalcollection.asme.org/ on 07/05/2018 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use

Find
Satisfy Formulation

Minimize

Template
Modules

Implementor

Changing parameters

fremmce] viame | werpt | Cout

Ploting

v o[o A |
Sl X

3

A
=

Template

B s

Consistency

Template

Fig.5 Knowledge-based decision support in PDSIDES

“variables” of the cDSP template. Using the classes and
slots defined in the ontology, DSP templates can be quickly
instantiated as instances, which are captured and stored in the
database for reuse, as shown in the top-left picture of Fig. 5.

3.3.2 Template Editors. Template editors ensure consistency
for editing. As mentioned earlier, modification of existing DSP
templates may incur inconsistency, especially when the template
is highly complex (e.g., tens of variables, constraints or goals,
etc.) and the editor who modifies the template is not the original
creator and does not have the full knowledge about the template.
Therefore, what they need is a consistency checking mechanism to
identify the potential inconsistency. A rule-based reasoning mecha-
nism is attached to the DSP ontologies in PDSIDES to provide con-
sistency checking service to the template editors. The rules are
extracted from the DSP constructs, such as the sum of the weights
assigned to the goals must be equal to 1. An example that a tem-
plate editor removes an existing goal (minimum cost) from the
cDSP template is shown at the bottom of Fig. 5; PDSIDES will
check if this brought inconsistency and inform him.

3.3.3 Template Implementers. Template implementers reuse
the documented knowledge and perform postsolution analysis. As
we state in Sec. 3.2, template implementers are those who have
little knowledge or interest in the analysis embodied in the tem-
plates; what they need is information that helps them exercise the
template and make the decision. In PDSIDES; the knowledge pro-
vided to the template implementers includes both the declarative
knowledge and procedural knowledge. The former is captured
from template creators and editors, and the latter is built in the
platform such as design space exploration algorithms, and plots,
which are hard-coded and can be invoked when needed. The pic-
ture on the top-right in Fig. 5 represents a template implementer

041001-6 / Vol. 18, DECEMBER 2018

who is changing the weights assigned to different goals and using
the ternary plot to identify the insensitive weight sets in order to
make a robust decision, during which process the knowledge
documented in the template is reused.

4 Implementation of Platform for Decision Support in
the Design of Engineering Systems

Platform for decision support in the design of engineering sys-
tems is implemented as a two-tier client-server architecture to pro-
vide knowledge-based decision support with web browser-based
graphical user interfaces (GUI) over the internet, as shown in Fig.
6. In the client-server architecture, applications of PDSIDES are
deployed to a web application server (marked as “knowledge serv-
er’ in Fig. 6) and provide remote user accesses using browsers
such as Internet Explorer and Google Chrome. Due to the easy
access through web browsers, PDSIDES can reach out to a rich
amount of users to get them involved in the decision template cre-
ating, editing, and executing process for engineering system
design, which is also a knowledge capturing, evolution, and reuse
process over the internet. The maintenance and upgrades for
PDSIDES in a client-server architecture are fairly convenient
since the application package is deployed in one web server
instead of distribution to a wide range of client computers. The
client side of PDSIDES is the user interaction GUI including tem-
plate searching and browsing GUI which are designed for locating
the wanted DSP templates and presenting them, template creating,
and editing GUI, which are designed based on the DSP template
structures for the purpose of instantiation and modification of the
DSP templates, the template execution, and analysis of GUI,
which are designed for executing DSP templates and performing
postsolution analysis. The GUI is allowed to communicate with

Transactions of the ASME

Downloaded From: http://asmedigitalcollection.asme.org/ on 07/05/2018 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use

WWW Client

Knowledge Server

Response Server Knowledge Base
PDSIDES GUI Instance Interpreter Template Instances
Search Engine Module Instances
Template _
Searching/Browsing GUI Consistency Checker JESS Reasoner
Problem Solver
Template Ontology
Creating/Editing GUI Resuit ?nalyzer Consistency Rules
Template Exgajltion/Analysis Matlab DESIDES
Ternary sDSP/cDSP
Plot/Scatter Plot ... /coupled DSP

Fig. 6 System architecture of PDSIDES

PDSIDES knowledge server by a request-response mode using the
hypertext transfer protocol. PDSIDES knowledge server includes
five main parts, namely, response server, knowledge base, JESS
reasoner, DSIDES, and maTLAB. The response server is the central
“brain” that integrates other four parts for responding to requests.
The response sever itself has five components including a search
engine, an instance interpreter, a consistency checker, and a prob-
lem solver. The instance interpreter is for interpreting the data col-
lected from the template creators (or editors) and formatting it
into DSP Template instances according to the DSP ontologies, the
generated template instances and module instances are stored in
the knowledge base. The search engine is connected to the knowl-
edge base to provide ontological semantic-based knowledge retrieval.
Consistency checking is facilitated through a consistency checker
together with the JESS reasoner—the rule engine for the javat™ plat-
form [33], which can provide rule-based intelligence inference. The
problem solver is connected to DSIDES for solving the DSPs; it is
invoked when a template executer executes a template. The result
analyzer is to help users especially template implementers analyze
the results produced by the problem solver. MaTLAB has a strong
capability in providing data visualization tools such as ternary plots
and scatter plots; therefore this feature is integrated to PDSIDES.

The front-end (i.e., the GUI) of PDSIDES is realized by Java-
Script that can be embedded in the web pages. The development
process is facilitated by the Sencha Inc.’s GXT [34]. GXT is a
comprehensive Java framework that uses the Google Web Toolkit
compiler [35], allowing developers to write applications in Java
and compile their codes into highly optimized JavaScript that supports
feature-rich web applications. Particularly, in order to enable graph-
based interaction in terms of the operation of the DSP networks that
may have multiple DSP templates and associated connections
involved, Apache Flex [36]—a rich internet application developing
framework is integrated to GXT to facilitate the creation of web-
based diagrams. A DSP template such as a cDSP template may be
very complex and have tens of variables, parameters, constraints,
goals, etc., which usually makes data transmission overloaded
between the front end and the back end. To address this issue, JSON
[37]—a lightweight data-interchange format, is used as the data trans-
mission scheme together with the hypertext transfer protocol.

The back end (i.e., the sever side) of PDSIDES is written in
Java to enable interoperability among different applications and
cross-platform deployment. Many back-end applications, such as
the instance interpreter, search engine, consistency checker, and
JESS reasoner, are heavily dependent on the DSP ontologies. As

Journal of Computing and Information Science in Engineering

mentioned earlier, the DSP ontologies are formalized using the
frame-based paradigm that contains classes and slots; the
realization of this paradigm using the frame language is presented in
this section, as shown in Fig. 7. The top box in the figure represents
the definition of class “SystemGoal” in the cDSP ontology, which
includes definitions of slots such as target, linearity, and equality,
and the associated facets such as type, cardinality, and allowed
values. The development of the DSP ontologies is facilitated using
the protégé tool [38], released by Stanford University which provides
an environment for modeling the frame-based ontologies and web
ontology language ontologies. The frame-based ontology is actually
an object-oriented mechanism based on which lots of instances can
be populated. Two boxes at the bottom of Fig. 7 represent two instan-
ces (i.e., volume goal and weight goal) of Class “SystemGoal” rep-
resented using frame language. The specific data in the slots of
the instances are first collected using the template creating/editing
GUI, then processed by the instance interpreter, and finally persisted
in relational databases (in PDSIDES we use ORACLE). Instances are
treated as facts that are processed in the consistency checking pro-
cess. In the JESS reasoner, all the facts are matched to the consis-
tency rules and take certain actions if the corresponding rules are
triggered. An example of the consistency rules is as follows:

(defrule MAIN::rule_5.1

(object (is-a cDSPTemplate) (OBJECT? a))

=>

(bind? k (Sum (slot-get? a preference) ONE))

(if (and (<>? k 1.0) (<>? k 0.0)) then (printout t “MESSAGE: the sum
of all the preferences is not 1.0!” crlf)))

The rule means that if the sum of the all preferences (i.e., the
weights) in any instance of Class cDSPTemplate is not equal to 1,
the reasoner will send a message about this inconsistency to the
user who is operating the template instance.

The portal of PDSIDES is shown in Fig. 8. A user can log in to
PDSIDES through a web browser using a username and a pass-
word. Template creators, editors, and implementers are three roles
that are assigned to users of PDSIDES according to the knowl-
edge they have in a specific domain. One designer can have
more than one role. Each role has its particular view in the plat-
form; the portal is the view shared by all three. The portal
includes two main parts: the left-hand side is the navigation
panel and the right-hand side is statistical information panel. The
former represents the key functionalities of PDSIDES including

DECEMBER 2018, Vol. 18 / 041001-7

Downloaded From: http://asmedigitalcollection.asme.org/ on 07/05/2018 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use

(defclass SystemGoal
(is-a THING)
(role concrete)
(single-slot target
(single-slot linearity
(single-slot equality

(single-slot name

(type FLOAT) (cardinality 0 1) (create-accessor read-write))
(type SYMBOL) (allowed-values Linear Nonlinear) (default Linear) (cardinality 1 1) (create-accessor read-write))
(type SYMBOL) (allowed-values 2 £ =) (default 2) (cardinality 0 1) (create-accessor read-write))

(type SIRING) (cardinality 0 1) (create-accessor read-write))

Class “SystemGoal”

([cDSP_Class30005] of SystemGoal
(equality X)
(expectationForGoal Maximize)
(expression "4*3.14*R~3/3+3.14*R~2*L")
(functionOf
[cDSP_Class30006]

ﬁ Instantiation &
L< > |

([cDSP_Class30016] of SystemGeal
(equality 2)
(expectationForGoal Minimize)
(expression "d*(4*3.14*(R+T)**3/3
+3.14% (R+T) **2*L-4*3,14*R**3/3-3. 14*R**2*L) ")
(functionOf
[cDSP_Class30004]
[cDSP_ClassS]

oo
[cDSP_Class30004]) [cDSP_Class40000] Weight

(functionType SystemGoal) Volume [cDSP_Class30006]) G
(linearity Nonlinear) (functionType SystemGoal) oal
(target 775000.0) Goal (linearity Nonlinear)

" s " (target 0.1)
(nanme"Maxinize: Volume?):) (name "Minimize Weight"))

Instances of “SystemGoal”
Fig. 7 Frame-based realization of the ontology and associate instances
%\ &Rl - & x

|) Navigation

ogout!

admin

@ Decision Knowledge Management

Decision Types
4 & Selection Decision Template Base R 4

Selection Decisions "<
- Coupled Decisions

@ Design Decision Support - 1
& Selection Decision Support
< Compromise Decision Support

7= Alternatives
attributes
4 I compromise Decision Template Base
(&) Variables/Parameters
f« Relationships (Functions)
LI Coupled Decision Template Base

.~ Compromise Decisions

\

Top 6 Decision Template Creators Top 6 Reused Decision Templates |

B
8
7
6
5
4
3
2
1
.]

LT Coupled Decision Support o |
B ,A,d,a,m, h}i:hael ﬁnand Joeseph N Myk i V\Vlrrenr B Pressur..i Spiral... - Dcrtil.u” ?arge...n Celluler... Heat... |
Latest Updated Decision Templates v E
Search | i Detail Execute I
Name Type Creator Editor Publisher = Creation Time Modification Ti... Release Time |
1| Pressure Vessel Design Compro... Adam Adam Adam 2016-08-01 10:... 2016-08-039:35 2016-08-03 10.... A
2 | Spiral Spring Design Compro... Joseph Adam Joseph 2016-08-029:30 2016-08-06 15:.. 2016-08-10 19:...
3 | Linear Celluler Alloy Design Compro... Adam Jelena Jelena 2016-09-019:30 2016-09-02 16:... 2016-09-02 19....
| 4 Hot Rod Rolling System Design Compro.. Michael Michael Michael 2016-09-04 10:.. 2016-09-04 14:.. 2016-09-04 20:...
5 | Light Switch Cover Rapid Prototyping Resource Selecti... Selection... Michael Michael Michael 2016-08-04 9:40 2016-08-04 11.... 2016-08-04 12:...
6 Aircraft Conceptual Design Problem Selection .. Anand Anand Anand 2016-08-01 13:.. 2016-08-01 15:... 2016-08-01 18:...
rﬁ Design Decision Support 7 Heat Fxchanaer Concentual Desian Problem Selection ... Mark Mark. Mark. 2016-08-08 12:...2016-08-08 17:... 2016-08-08 21:... M

|- Settings 7I4 d |Page[t lof1| b M| &

Displaying 1-9 of 9
1

Fig. 8 PDSIDES portal

the decision knowledge management portion (managing knowl-
edge about selection, compromise, and hierarchical decisions.
Access is assigned to creators and editors), the design decision
support portion (providing DSP template executing and analysis
service, access is assigned to Implementers), and the settings
portion (purview management, access is assigned only to system
administrators). The latter presents the charts and tables in terms of
the decision-related knowledge and users. Users can see the number
and the distribution of DSP templates in PDSIDES, the ranking of
Creators who contribute their knowledge to PDSIDES, the ranking
of templates that are reused frequently, and the latest updated DSP
templates. They can also search, browse, and execute certain
templates.

041001-8 / Vol. 18, DECEMBER 2018

5 A Test Example for Platform for Decision Support
in the Design of Engineering Systems

In this section, the performance of platform PDSIDES is tested
via a gear manufacturing process design problem—a complex sys-
tem design that calls for a series of decisions to be made. The
foundational problem is contributed by our industrial partner—the
Tata Consultancy Services in India [39]. From the raw material to
the final gear product, the material goes through multiple unit
operations such as casting, rolling, cooling, forging, and machin-
ing, which are some of the processes in the steel manufacturing
process chain. In order to obtain the desired end properties of the
gear produced, proper decisions need to be made about the

Transactions of the ASME

Downloaded From: http://asmedigitalcollection.asme.org/ on 07/05/2018 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use

process control parameters (set points) at each of these processes. Find
A large number of plant trials involving time and cost are needed System Variables
to 1d§nt1fy these operating set points. An alternative to this is to X, Cooling Rate (CR)
exploit the advancements in modeling tools and frameworks to - S
carry out the design of the system to realize the end product. To X2, Austenite Grain Size gAGS)
) ’ X3, the carbon concentration ([C])

couple the material processing-structure-property-performance .
P p st property-pe . X4, the manganese concentration ([Mn])
spaces, we need to achieve the vertical and horizontal integration

of models which further allows us to carry out the integrated Deviation Variables
decision-based design of the manufacturing processes to realize

the end product [40—42]. Decisions to be made at each manufac- d; ,di* , 1 =1,2,34
turing unit are formulated as cDSPs and linked as a decision net-

work (mathematically modeled as coupled cDSPs) using a goal- Satisfy

oriented, inverse decision-based design method [40]. In this System Constraints

paper, the hot rod rolling system design problem addressed by

Nellippallil et al. [40,43] is used as an example to test the per- : ﬁml_m um fferr1.tt6: grain size consttralp tt

formance of PDSIDES. As mentioned earlier, the problem . ng}mum eml'? &r atln ls 1ze Tlo nstrain traint

includes multiple stages. We frame a boundary within the cool- {nimum peartite iteriameriar spacing constrain

. . e Maximum interlamellar spacing constraint

ing stage and the end rod product requirements for the sake of S

simplicit e Minimum ferrite phase fraction constraint (manage banding)
pueity. e Maximum ferrite phase fraction constraint (manage banding)

.. . e Minimum manganese concentration constraint (manage
5.1 Original Design. In original design, the template creator banding) & (&

(domain expert) formulates in PDSIDES the cDSP for the prob-
lem boundary framed within the hot rod rolling process chain
problem by taking into account the complete information flow
across models thereby establishing relationships. The relation-
ships established in the original design cDSP are the end mechani-
cal properties of the product; YS (yield strength), 7S (tensile
strength), ITT (impact transition temperature), and HV (hardness)
as a function of the system variables that are the output after roll-
ing and input to cooling stage. The output parameters after cooling
like FGS (ferrite grain size, D), Xy (phase fractions of ferrite), So
(pearlite interlamellar spacing), and composition variables that
defines the end mechanical properties are defined as constraints in
the cDSP formulated. The end product mechanical property goals, System Goals
for example, maximizing YS, TS and minimizing /7T along with Goal I:

the goal for managing banding by maximizing ferrite fraction are
captured in the cDSP. These goals are controlled by the independ-
ent system variables of this problem namely CR (cooling rate),
AGS (grain size after rolling), C (carbon), and Mn (manganese). YS(X:) +dr—dt =1
The upper and lower limits for the system variables and the maxi- YSTarget ! r
mum and minimum values for certain cooling stage parameters as

well as for the mechanical properties are defined in the cDSP as Goal 2:

bounds and constraints. The target values for the goals are defined
as YStayger= 400MPa, TStyger= 780MPa, ITTryee= —90°C,
Xf Targert= 0.8. The original design cDSP reads as follows:

Maximum manganese concentration constraint (manage
banding)

Maximum carbon equivalent constraint (manage banding)
Minimum yield strength constraint

Maximum yield strength constraint

Minimum tensile strength constraint

Maximum tensile strength constraint

Minimum hardness constraint

Maximum hardness constraint

Minimum ITT constraint

Maximum ITT constraint

e Maximize yield strength

e Maximize tensile strength

TS(X)

. +d, —df =1
Given TS Targer 2 2
(1) End requirements identified for the rod rolling process
e Maximize Yield Strength (Goal) Goal 3:
e Maximize Tensile Strength (Goal) e Minimize ITT
e Minimize ITT (Goal)
e Maximize Ferrite Fraction (Goal)
e Maximize Hardness (Requirement) ITTrarger Ao+ dt —1
(2) Well established empirical and theoretical correlations, ITT(X;) 3 3
RSMs and complete information flow from the end of roll-
ing to the end product mechanical properties (more descrip- 47 4-
tion in reference [40]) o))
(3) System variables and their ranges e Maximize ferrite fraction
XK | g2
Table 1 System variables and ranges for CDSP Xy 4 4 =
arget
Sr. No System variables Ranges
Variable bounds
1 X, CR 11-100 K/min Defined in Table 1
2 X5, AGS 30-100 pum Bounds on deviation variables
3 X3, the carbon concentration ([C]) 0.18-0.3%
4 X4, the manganese concentration ([Mn]) 0.7-1.5% d;,dﬁ >0 and df *d;r —0i=123
Journal of Computing and Information Science in Engineering DECEMBER 2018, Vol. 18 / 041001-9

Downloaded From: http://asmedigitalcollection.asme.org/ on 07/05/2018 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use

‘ Creating Hierarchical DSP Templates Create Compromise DSP Template

General Info.

PANRNAN

Variables

Parameters

FECRn e ~
Tl = N Name: &) Add | & Remove »|) Add | &) Remove »
HRRS:DesigniDecisioniTemplate Cooling Rate (CR) *) Pearlite Colony Size, =
@ ,; Problem Statement: - 9 o, ! e
e) % £ 5 < g steel manuractuning process Austenite Grzin Size (AGS) Cementite Thickness, t
Process ;gpeldxgn‘)drr:)er'r;;oe:iitsaiol} ?;lz the carbon concentration (C) Retained Strain, €_r
gear produced, proper decisions I the manganese concentratior Composition of Silicon, Si
need to be made about the
process control parameters (set CameostoniofNickel; Ny
X @ b points) at e_ach of rhe_se) - o Composition of Molybdenum, =
-y ac
Interface g ? k $
HRRS cDSP** A - =
Constraints Goals Preferences
) Add | & Remove ») Add | & Remove » € Add | € Remove
) [Minimum fenite grain size cc * Maximize Yield Strength = Goal Level Weight
. . [} Maximum ferrite grain size c(| Maximize Tensile Strength 1 "Maximize Y... "One 025
Minimum pearlite interlamell; Minimize ITT 2 "Maximize T... "One "0.25
pearlite interlamell Maximize Ferite Fraction 3 [Minimize 17T "One 7025
) Minimum fenite phase fracti(_ 2 4 ’MBXImiZe Fu. 'One ’025
< » ‘ » < »
| Save Cancel
Variable/Parameters f Relationships(Functions)
() Create & Delete Retrieve | B3 ElementOf | © create | @ Detete Retrieve | 4 Function-Of
Name Description Type Symbol Unit UpperBound LowerBound Iniﬁal: Name Description Type Equation Linearity Direction Limit
17 Austenite Gra... Austenite Gra.. Variable ' AGS "um "100 "30 "0 [Minimum pe| fing constraint

Cooling Rate (| Cooling Rate | Variable v | CR K/min 100 1
(CR)

i\ Cancel Save |

| Constrai | v | Mn+0.0305*C/ | Nonlinea| v || = (Minin v | 0.09

50
Cancel | Save

Fig.9 Creating the HRRS design decision template in PDSIDES

Minimize
We minimize the deviation function

Z=>"Wild +df); S Wi=1

i=1 i=1

By the formulation of ¢cDSP, knowledge associated with the fol-
lowing inverse problem is captured: Given the end product
mechanical properties of a new steel product mix, what should be
the microstructure after rolling and design set points for cooling
stage that satisfies the requirements identified? To facilitate
knowledge capturing process in the computational environment,
PDSIDES provides the GUI for the template creator to create DSP
templates, as shown in Fig. 9.

On the left-hand side of the canvas are the building blocks,
including Process and Interface, which are formally defined in the
ontology for the purpose of creating decision network templates
(hierarchical DSP templates). Since there is only one cDSP for-
mulated for the original design of HRRS, the template creator can
simply instantiate a process on the canvas, and embody it with a
c¢DSP template. The cDSP template is created in the “compromise
decision template base” portion of PDSIDES. As shown in the
window on the top right of Fig. 9, the template creator can instan-
tiate the HRRS cDSP template by specifying the slots including
name, problem statement, variables, parameters, constraints,
goals, and preferences using data such as cooling rate, austenite
grain size (AGS), and carbon concentration, of the HRRS cDSP.
Facet information of the slots, such as symbol, unit of a vari-
able and equation, limit of a constraint, are further specified using
the GUI designed for the instantiation of template modules, as
shown in the two panels on the bottom. When the HRRS c¢DSP
template is populated with specific information, it is sent to the
knowledge server for consistency checking, calculation of results,
persistence in the knowledge base, and is ready for future reuse in
adaptive and variant designs.

5.2 Adaptive Design. In adaptive design, the template editor
(senior designer) modifies the existing original design cDSP tem-
plate according to new requirements. In the hot rod rolling prob-
lem addressed, the cDSP template of the original design relates

041001-10 / Vol. 18, DECEMBER 2018

the end product mechanical properties as a function of microstruc-
ture factors after rolling and the cooling stage operating parame-
ters. The intermediate factors, for example, the ferrite grain size
after cooling and the pearlite interlamellar spacing, which directly
influence mechanical properties, are defined as constraints. Sup-
pose, a situation arises that the designer is interested in knowing
the range of microstructure factors after cooling that will satisfy a
given end mechanical property requirements. In such a situation,
new decision models need to be created by considering the micro-
structure factors after cooling as independent variables to define
the end mechanical properties. This requirement can be easily sat-
isfied by editing the existing formulated original design cDSP
template in PDSIDES. The editing involves two major steps: step
1, decompose the original cDSP template into two separate cDSP
templates, and step 2, link the two separate cDSP templates using
an Interface.

The process of the first step is shown in Fig. 10. The original
c¢DSP is decomposed into two ¢DSPs, namely, ¢DSP I and ¢cDSP
2. ¢DSP 1 relates the end mechanical properties as a function of
microstructure factors (D, X, So, Mn, Si, N) after cooling. The
combination of microstructure factors after cooling that best satis-
fies the end requirements are identified by exercising this sub-
cDSP. While, ¢cDSP 2 has the best combination of microstructure
factor values after cooling identified from ¢DSP I as goals. Using
c¢DSP 2, the relationship between the microstructure factors after
cooling with the microstructure after rolling and the cooling stage
operating parameters (AGS, CR, C, Mn) is established. To realize
the decomposition, modification of the original cDSP is as
follows:

e For cDSP 1:

e Set ferrite grain size (D,), phase fraction of ferrite (X),
pearlite interlamellar spacing (Sp), manganese concentration
([Mn]), the composition of Si ([Si]), and the composition of

Original

cDSP 1
cDSP 2 cDSP

C—> COOLING |t > Eggc;uEC’\'er

Fig. 10 Decomposition of the original CDSP

Transactions of the ASME

Downloaded From: http://asmedigitalcollection.asme.org/ on 07/05/2018 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use

N ([N]) which are system constraints of the original cDSP, to
be system variables.

e Keep the rest constraints and goals the same as the original
cDSP.

e For cDSP 2:

e Keep the system variables, namely, CR, AGS, the carbon
concentration ([C]), and the manganese concentration ([Mn]),
the same as they are in the original cDSP.

e Set ferrite grain size (D), phase fraction of ferrite (Xy), and
pearlite interlamellar spacing (Sp), which are system varia-
bles of ¢DSP 1, to be system goals.

e Set the final values of D,, Xr, and Sy obtained from ¢DSP 1,
to be the targets of the system goals of cDSP 2.

The connection between cDSP I and ¢cDSP 2 is that the output
(i.e., the final values of the system variables) of cDSP I comprises
the input (i.e., the targets of the system goals) of ¢DSP 2. This
connection represents the information workflow that links two
c¢DSPs, which maps to step 2 mentioned earlier for editing the
original cDSP template. On the platform, the editing and the asso-
ciated consistency checking process is shown in Fig. 11. The tem-
plate editor can instantiate two new cDSP templates on the
canvas, as highlighted by two rectangles marked as “End Product
c¢DSP” and “Cooling cDSP” that represent ¢cDSP [and ¢DSP 2,
respectively. The instantiation of these two cDSP templates is the
same as that is shown in Fig. 9. It is noted that many modules of
the original cDSP template are reused due to the modularization
during the instantiation process of the two new cDSP templates.
The link between two cDSP templates is captured by the instantia-
tion of an Interface marked as “exchange” that is highlighted in
the circle. Configuration of the Interface is performed in the right
window, where information in terms of interface type, strength,
information flow, etc. is specified. According to the interaction
between the two cDSP templates, the information flow is weak
(one-way), sequential and flows from ¢DSP I to ¢DSP 2. The con-
tents of the flow are the values of the five system variables of
c¢DSP 1. Before executing the edited decision templates, the editor
needs to check if there is any inconsistency due to the editing. The
consistency checking process is shown in the panel on the bottom

of Fig. 11. Consistency rules can be dynamically defined and
added into the reasoner for reasoning. If no rule is violated, the
newly edited cDSP templates would be ready for execution, stor-
age, and reuse.

The results are obtained after exercising the cDSP I and cDSP 2
and are provided in reference [40] and are not repeated here.

5.3 Variant Design. In variant design, the template imple-
menter makes parametric modifications to the already developed
decision templates and executes the templates for different scenar-
ios. In this paper, we showcase variant designs by executing the
c¢DSP template of the original design for different scenarios identi-
fied by assigning weights to the deviations associated with each
goal. We also illustrate the efficacy of ternary plots in PDSIDES
to support the template implementer in exploring the solution
space of variant designs to make appropriate design decisions. For
the problem formulated in original cDSP, the template imple-
menter is interested in accomplishing the following goals: maxi-
mizing ferrite fraction (to manage banding), maximizing tensile
strength, maximizing yield strength, and minimizing impact tran-
sition temperature. To visualize the goals in ternary space, it needs
the template editor to first edit the original cDSP template to
remove the goal on impact transition temperature and assign it as
a constraint with minimum and maximum value. This is carried
out because it is known that the impact transition temperature is
directly influenced by changes in weights to other goals and hence
need not be considered as a direct goal. Thus, the variant design
c¢DSP has three goals—maximizing ferrite fraction, maximizing
tensile strength, and maximizing yield strength. Having developed
the variant design cDSP, the next step for the template imple-
menter is to identify design scenarios for execution.

On the platform, the identification of design scenarios is facili-
tated by the panel shown in Fig. 12. The template implementer
can specify several weight combinations (each combination stands
for one scenario) for goal deviations using the table on the top,
PDSIDES will calculate the result with respect to each of the
weight combination. In this paper, 19 different scenarios are iden-
tified, for more information on identifying scenarios, see Ref.

Editing Hierarchical DSP Templates Interface Configuration =2 v
o n B3 3 | 7 =
H Tg @ K vJ kr‘li 1 |°\0| \I \‘“ 3| General Info.
Ay Name: Exchange Flow Sequential Vi
£ o : o T, < Type:
? ®) Interface | Lateral Interface ¥
Process A L cDSP'1 Type: DescriptionThis interface represents the
pamgamls™ s & % o8 % information exchange between
Strength: | Weak Vi the end product ¢DSP and the
’@ cooling ¢DSP.
Interfac
Interface Process 1 Flow:1t02
End Product cDSP O Add | © Remove | i Detail
E| Sy / cDSP 2 [) Ferite Grain Size (D_a) ©
Cooling cDS* : Pearlite Interlamellar Spacing (S_o

Consistency Checking

7 | Every instance in the slot “hasPreference” should cc

8 Every Variable instance of type “DeviationVariable"

9 | All the instances in the slot “hasPreference” should ~
‘ »

(bind ?k (Sum (slot-get ?a preference) ONE))

(if (and (<> ?k 1.0) (<> ?k 0.0)) then (printout t

"MESSAGE: the sum of all the preferences is not 1.0!"
| ctif))) 2]

Rules Rule Matching » e
the composition of N (N) -
&) Add Edit | & Remove B Execute ; =
Name time 11:02:35 message data sentto server..
Flow: 2to 1

time 11:02:36 message loading rules..
time 11:02:36 message loading ontology and instances..
time 11:02:36 message start matching.. a

time 11:02:37 message finish matching,no inconsistency.

the phase fraction of ferite (X_f)
the composition of Si (Si)

() Add | & Remove | K}l Detail

3ave Cancel

Fig. 11

Journal of Computing and Information Science in Engineering

Editing the HRRS design decision template in PDSIDES

DECEMBER 2018, Vol. 18 / 041001-11

Downloaded From: http://asmedigitalcollection.asme.org/ on 07/05/2018 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use

Scenarios X

[€ Add | & Remove
[
[Ferrite Fraction

[P Vs

Tensile Strength

VRV

Yield Strength
oo

ol v Ll
13 06 0.1 0.3
" di v
14 0.6 0.3 0.1
” L g L4
15| 0.1 0.6 03
r v v
16 03 0.6 0.1
e v L d
17 025 0.25 0.5
L4 3 v
18 0.5 0.25 0.25
| 0.25 05 |0.25]
| =
[Cancel Save ‘
\ ,
|
Post-Solution Analysis 3
() Add | &) Remove »
| Maximize Yield Strength |= |
| Maximize Tensile Strength ‘ | \’]
AMinimize I FERRITE FRAC.. TENSILE STRE...
| Maximize Ferrite Fraction
4 i o
N A \ |
YIELD STRENGTH ITT

Fig. 12 Exercising the HRRS design decision template in
PDSIDES

[41]. The template implementer exercises the original cDSP tem-
plate in variant design scenarios and the results obtained are sent
to MATLAB (at the back-end of PDSIDES) to plot as ternary plots
shown in the bottom panel of Fig. 12. The template implementer
identifies regions (weight combinations) that satisfy the require-
ments from the ternary plots. More information on the creation of
ternary plots and the evaluation of the same is available in
Ref. [41].

The ternary plot for ferrite fraction is shown in Fig. 13. The
requirement for the template implementer is to maximize ferrite
fraction to a value of 0.8 and the maximum value achieved on
exercising the cDSP is 0.7116 identified by the light dashed line
in the high ferrite region region of Fig. 13. Any weight combina-
tion of goals in this region achieves high ferrite fraction. Simi-
larly, the high pearlite fraction region is identified by the high
pearlite region in Fig. 13. The highly banded ferrite—pearlite
microstructure region is identified in the boundary between these
two regions. The same method is extended to identify the regions
that satisfy the requirements of tensile strength, yield strength,
and impact transition temperature.

Max X = 0.7116

0 1 1 Target = 0.8
{as max as
possible)
0.8
0.6
.Q’ Hig!, Ferrite 0 4 d% . 0 4
§ Region ?96

. 0.2

04 _ 0.6 0.8
ngth

0 %odm

Min X; = 0.3216

0.2
Weight on Tensile Stre

Fig. 13 Ternary plot for ferrite fraction

041001-12 / Vol. 18, DECEMBER 2018

'+ Max Ferrite Region
Max Pearlite Region

+ Max Tensile Strength Region
+ Max Yield Strength Region
+ Target Impact Transition Temperature

< : S
e} Different solution weight
3, points

< P4
$O 0 6 .nT:-o."C\\ / Banded o{D
S High Ferrite & ‘ Ferrite-Pearlite [
g {Ezmn F E - {es!un %
\ &,
Y rrr=az M, I \ ’ (5
N\ o

.
m

02 04_ 0. 08
A Weight on Tensiie Strength

Fig. 14 Superimposed ternary plot

Table 2 Identified solution points after exploration

Sol. CR AGS C Mn YS TS ITT
Pt (K/min) (um) (%) (%) X¢ (MPa) (MPa) (°C)
A 16.5 999 0.18 0.7 0.71 232 4877 =26
B 99.9 30 029 15 032 248 662 99
C 22.8 30 0.18 1.5 07 284 526 35
D 11 30 0.18 1.5 0.71 283 519 0
E 11 30 0.18 1.5 0.71 283 519 0
F 11 30 0.18 0.7 07 244 513 —42
G 62 30 0.19 1.5 0.65 281 547 15

Since the template implementer’s interest is to identify a com-
mon region that satisfies all the goals, a superimposed ternary plot
having all the goals is generated as showcased in Fig. 14. From
the superimposed ternary plot, several solution weight points (A,
B, C, D, E, F, G) are identified and analyzed. The results associ-
ated with these solution weight points are summarized in Table 2.
On analyzing Fig. 14 and Table 2, it is seen that the light banded
ferrite-pearlite region satisfies all the requirements for managing
banding (high ferrite), maximizing yield strength, maximizing
tensile strength, and minimizing /77 in the best possible manner.
However, the requirements for high tensile strength and high yield
strength are compromised to satisfy requirements like managing
banding and minimizing /77. It is also observed that a high ferrite
region supports the maximization of yield strength and minimiza-
tion of /TT. The maximization of tensile strength, however, is sup-
ported by high pearlite fraction. Point F out of these multiple
solutions listed in Table 2 is picked as F satisfies all the require-
ments in the best possible manner.

By reusing the knowledge archived in the original HRRS
design cDSP template for execution and utilizing the ternary plot
for post-solution analysis, the template implementer explores the
solution space of variant designs and makes appropriate design
decisions.

6 Closing Remarks

Engineering system design is fundamentally a decision-making
process and knowledge plays a critical role in facilitating decision
making. In this paper, we present a Knowledge-Based Platform
for Decision Support in the Design of Engineering Systems. In
PDSIDES, decision-related kﬁowledge is modeled as modular,
computational templates based on the DSP constructs using ontol-
ogy to facilitate execution and reuse. In order to provide users of
different knowledge levels with a proper decision support, we
define three types of users, namely, template creators, template
editor, and template implementers, who perform original design,
adaptive design, and variant design respectively. The unique
advantage of PDSIDES is that it provides the functionality to

Transactions of the ASME

Downloaded From: http://asmedigitalcollection.asme.org/ on 07/05/2018 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use

capture knowledge when template creators create decision tem-
plates in original design, maintain consistency when template edi-
tor modifies decision templates in adaptive design, and provide a
package of documented knowledge when template implementers
execute decision templates in variant design.

Distributed information control is not yet considered in the cur-
rent version of PDSIDES. Future research opportunities lie in ena-
bling the negotiation of collaborative decisions that are controlled
by different stakeholders. For example, in the HRRS design,
example process designers at different stages such as rolling and
cooling may not be willing to share the full information in their
own decision-making process, and then the negotiation of a col-
laborative decision is needed. Providing the functionality for
negotiating collaborative decisions would be of great potential for
the application of PDSIDES in a supply chain environment, where
the decision makers are distributed.

Acknowledgment

Zhenjun Ming acknowledges the support from China Scholar-
ship Council grant 201406030014 for visiting the System Realiza-
tion Laboratory at the University of Oklahoma and carrying out
this research. Yan Yan and Guoxin Wang acknowledge the sup-
port from National Natural Science Foundation of China grant
51375049. The authors thank TRDDC, Tata Consultancy Serv-
ices, Pune for supporting this work (Grant No. 105-373200). Janet
K. Allen and Farrokh Mistree gratefully acknowledge funding from
the John and Mary Moore Chair and L.A. Comp Chair at the Uni-
versity of Oklahoma respectively. This paper is an outcome of the
International Systems Realization Partnership between the Institute
for Industrial Engineering @ The Beijing Institute of Technology,
The Systems Realization Laboratory @ The University of Okla-
homa and the Design Engineering Laboratory @ Purdue.

Nomenclature

c¢DSP = compromise DSP, a domain-
independent decision construct for
formulating compromise decisions
DSP = decision support problem, the
construct for formulating decisions
encountered in engineering design.
Independent of the domain of
application
DSP Template = the domain-independent DSP construct
instantiated with the infusion of
domain knowledge and is computer
interpretable
Decision Workflow = a set of interconnected decisions that
are represented by a number of DSP
templates either serially or
hierarchically
PDSIDES = knowledge-based platform for decision
support in the design of engineering
systems
sDSP = selection DSP, a domain-independent
decision construct for formulating
selection decisions
Template Creators = users of the PDSIDES platform who
create DSP templates (original design)
Template Editors = users of the PDSIDES platform who
edit or tailor existing DSP templates
(adaptive design)
Template Implementers = users of the PDSIDES platform who
execute DSP existing templates (vari-
ant design)

References

[1] Soria, N., Colby, M. K., Tumer, I. Y., Hoyle, C., and Tumer, K., 2017, “Design
of Complex Engineered System Using Multiagent Coordination,” ASME J.
Comput. Inf. Sci. Eng., 18(1), p. 011003.

Journal of Computing and Information Science in Engineering

[2] Berg, L. P., and Vance, J. M., 2016, “An Industry Case Study: Investigating
Early Design Decision Making in Virtual Reality,” ASME J. Comput. Inf. Sci.
Eng., 17(1), p. 011001.

[3] Afshari, H., Peng, Q., and Gu, P., 2016, “Design Optimization for Sustainable
Products Under Users’ Preference Changes,” ASME J. Comput. Inf. Sci. Eng.,
16(4), p. 041001.

[4] Daskilewicz, M. J., and German, B. J., 2012, “Rave: A Computational Frame-
work to Facilitate Research in Design Decision Support,” ASME J. Comput.
Inf. Sci. Eng., 12(2), p. 021005.

[5] Kuppuraju, N., Ganesan, S., Mistree, F., and Sobieski, J. S., 1985, “Hierarchical
Decision-Making in System-Design,” Eng. Optim., 8(3), pp. 223-252.

[6] Shah, J. J., and Mantyla, M., 1995, Parametric and Feature-Based CAD/CAM:
Concepts, Techniques and Applications, Wiley, New York.

[7] Coyne, R. D. D., Rosenman, M. A., Radford, A. D., Balachandran, M., and
Gero, J. S., 1990, Knowledge-Based Design Systems, Addison-Wesley Pub. Co,
Boston, MA.

[8] Finger, S., and Dixon, J. R., 1989, “A Review of Research in Mechanical Engi-
neering Design—Part II: Representations, Analysis, and Design for the Life
Cycle,” Res. Eng. Des., 1(2), pp. 121-137.

[9] Verhagen, W. J. C., Bermell-Garcia, P., Van Dijk, R. E. C., and Curran, R.,
2012, “A Critical Review of Knowledge-Based Engineering: An Identification
of Research Challenges,” Adv. Eng. Inform., 26(1), pp. 5-15.

[10] Rocca, G. L., 2012, “Knowledge Based Engineering: Between Al and CAD.
Review of a Language Based Technology to Support Engineering Design,”
Adv. Eng. Inform., 26(2), pp. 159-179.

[11] Jakiela, M. J., and Papalambros, P. Y., 1989, “Design and Implementation of a
Prototype ‘Intelligent” CAD System,” ASME J. Mech. Transm. Autom. Des.,
111(2), pp. 252-258.

[12] Sapuan, S. M., 2001, “A Knowledge-Based System for Materials Selection in
Mechanical Engineering Design,” Mater. Des., 22(8), pp. 687-695.

[13] Rockwell, J. A., Grosse, I. R., Krishnamurty, S., and Wileden, J. C., 2010, “A
Semantic Information Model for Capturing and Communicating Design Deci-
sions,” ASME J. Comput. Inf. Sci. Eng., 10(3), p. 031008.

[14] Ming, Z., Wang, G., Yan, Y., Panchal, J. H., Goh, D., Allen, J. K., and Mistree,
F., 2017, “Ontology-Based Representation of Design Decision Hierarchies,”
ASME J. Comput. Inf. Sci. Eng., 18(1), p. 011001.

[15] Ming, Z., Wang, G., Yan, Y., Dal Santo, J., Allen, J. K., and Mistree, F., 2017,
“An Ontology for Reusable and Executable Decision Templates,” ASME J.
Comput. Inf. Sci. Eng., 17(3), p. 031008.

[16] Ming, Z., Yan, Y., Wang, G., Panchal, J. H., Goh, C. H., Allen, J. K., and Mistree,
F., 2016, “Ontology-Based Executable Design Decision Template Representation
and Reuse,” Artif. Intell. Eng. Des., Anal. Manuf., 30(4), pp. 390—405.

[17] Mistree, F., Smith, W. F., Bras, B. A., Allen, J. K., and Muster, D., 1990,
“Decision-Based Design: A Contemporary Paradigm for Ship Design,” Trans.,
Soc. Nav. Archit. Mar. Eng., 98, pp. 565-597.

[18] Hazelrigg, G. A., 1998, “A Framework for Decision-Based Engineering
Design,” ASME J. Mech. Des., 120(4), pp. 653-658.

[19] Muster, D., and Mistree, F., 1988, “The Decision Support Problem Technique
in Engineering Design,” Int. J. Appl. Eng. Educ., 4(1), pp. 23-33.

[20] Mistree, F., Lewis, K., and Stonis, L., 1994, “Selection in the Conceptual
Design of Aircraft,” AIAA J., 5th Symposium on Multidisciplinary Analysis
and Optimization, American Institute of Aeronautics and Astronautics, Panama
City Beach, FL, Sept. 7-9.

[21] Mistree, F., Hughes, O. F., and Bras, B. A., 1993, “The Compromise Decision
Support Problem and the Adaptive Linear Programming Algorithm,” Structural
Optimization: Status and Promise, AIAA, Washington, DC, pp. 247-286.

[22] Bascaran, E., Bannerot, R., and Mistree, F., 1987, “The Conceptual Develop-
ment of a Methodology for Solving Multi-Objective Hierarchical Thermal
Design Problems,” ASME Paper No. 87-HT-62.

[23] Smith, W. F., 1985, The Development of AUSEVAL: An Automated Ship Evalu-
ation System, ML.S. dissertation, University of Houston, Houston, TX.

[24] Reddy, R., Smith, W., Mistree, F., Bras, B., Chen, W., Malhotra, A., Badhri-
nath, K., Lautenschlager, U., Pakala, R., and Vadde, S., 1996, “DSIDES User
Manual,” Georgia Institue of Technology, Atlanta, Georgia.

[25] Panchal, J. H., Ferniandez, M. G., Paredis, C. J. J., and Mistree, F., 2004,
“Reusable Design Processes Via Modular, Executable, Decision-Centric
Templates,” AIAA Paper No. 2004-4601.

[26] Gruber, T. R., 1993, “A Translation Approach to Portable Ontology Specifica-
tions,” Knowl. Acquis., 5(2), pp. 199-220.

[27] Zhan, P., Jayaram, U., Kim, O., and Zhu, L., 2010, “Knowledge Representation
and Ontology Mapping Methods for Product Data in Engineering
Applications,” ASME J. Comput. Inf. Sci. Eng., 10(2), p. 021004.

[28] Li, Z., Raskin, V., and Ramani, K., 2008, “Developing Engineering Ontology
for Information Retrieval,” ASME J. Comput. Inf. Sci. Eng., 8(1), p. 011003.

[29] Wang, H., Noy, N., Rector, A., Musen, M., Redmond, T., Rubin, D., Tu, S.,
Tudorache, T., Drummond, N., and Horridge, M., “Frames and OWL Side by
Side,” Presentation Abstracts, Stanford University, Stanford, CA, p. 54.

[30] Mocko, G. M., Rosen, D. W., and Mistree, F., 2007, “Decision Retrieval and
Storage Enabled Through Description Logic,” ASME Paper No. DETC2007-
35644.

[31] Baeza-Yates, R., and Ribeiro-Neto, B., 2011, Modern Information Retrieval:
The Concepts and Technology behind Search, Addison Wesley, Boston, MA.

[32] Salton, G., Wong, A., and Yang, C.-S., 1975, “A Vector Space Model for Auto-
matic Indexing,” Commun. ACM, 18(11), pp. 613-620.

[33] Friedman-Hill, E., 2015, “JESS - the Rule Engine for the JavaTM Platform,”
Manning Publications Co., Shelter Island, NY, accessed June 16, 2018, http://
herzberg.ca.sandia.gov/

DECEMBER 2018, Vol. 18 / 041001-13

Downloaded From: http://asmedigitalcollection.asme.org/ on 07/05/2018 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use

http://dx.doi.org/10.1115/1.4038158
http://dx.doi.org/10.1115/1.4038158
http://dx.doi.org/10.1115/1.4034267
http://dx.doi.org/10.1115/1.4034267
http://dx.doi.org/10.1115/1.4033234
http://dx.doi.org/10.1115/1.4006464
http://dx.doi.org/10.1115/1.4006464
http://dx.doi.org/10.1080/03052158508902491
http://dx.doi.org/10.1007/BF01580205
http://dx.doi.org/10.1016/j.aei.2011.06.004
http://dx.doi.org/10.1016/j.aei.2012.02.002
http://dx.doi.org/10.1115/1.3258991
http://dx.doi.org/10.1016/S0261-3069(00)00108-4
http://dx.doi.org/10.1115/1.3462926
http://dx.doi.org/10.1115/1.4037934
http://dx.doi.org/10.1115/1.4034436
http://dx.doi.org/10.1115/1.4034436
http://dx.doi.org/10.1017/S0890060416000378
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.4236&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.4236&rep=rep1&type=pdf
http://dx.doi.org/10.1115/1.2829328
https://www.researchgate.net/publication/236843129_The_Decision_Support_Problem_Technique_in_Engineering_Design
https://arc.aiaa.org/doi/10.2514/6.1994-4382
https://arc.aiaa.org/doi/10.2514/6.1994-4382
https://www.researchgate.net/profile/Farrokh_Mistree/publication/236686654_The_Conceptual_Development_of_a_Method_for_Solving_Multi-objective_Hierarchical_Thermal_Design_Problems/links/00b7d5303f3b858500000000.pdf
http://dx.doi.org/10.2514/6.2004-4601
http://dx.doi.org/10.1006/knac.1993.1008
http://dx.doi.org/10.1115/1.3330432
http://dx.doi.org/10.1115/1.2830851
http://dx.doi.org/10.1115/DETC2007-35644
http://dx.doi.org/10.1145/361219.361220

[34] Sencha, 2018, “Sencha GXT,” accessed June 16, 2018, https://www.sencha.
com/products/gxt/#overview

[35] Google, 2018, “Google Web Toolkit,” accessed June 16, 2018, http://
www.gwtproject.org/overview.html

[36] Adobe, 2018, “Apache Flex," accessed June 16, 2018, https://www.adobe.com/
devnet/flex.html

[37] JSON, 2018, “JavaScript Object Notation,” accessed June 16, 2018, http://
www.json.org/

[38] Stanford University, 2018, “Protégé 3.5,” accessed June 16, 2018,
protegewiki.stanford.edu/wiki/Protege_3.5_Release_Notes

[39] Allen, J. K., Mistree, F., Panchal, J., Gautham, B., Singh, A., Reddy, S., Kul-
karni, N., and Kumar, P., 2013, “Integrated Realization of Engineered Materials
and Products: A Foundational Problem,” 2nd World Congress on Integrated
Computational Materials Engineering (ICME), Salt Lake City, UT, July 7-11,
pp. 277-284.

[40] Nellippallil, A. B., Vignesh, R., Allen, J. K., Mistree, F., Gautham, B. P.,
and Singh, A. K., 2017, “A Goal-Oriented, Inverse Decision-Based

https://

041001-14 / Vol. 18, DECEMBER 2018

[41]

[42]

[43]

Design Method to Achieve the Vertical and Horizontal Integration of
Models in a Hot-Rod Rolling Process Chain,” ASME Paper No.
DETC2017-67570.

Nellippallil, A. B., Song, K. N., Goh, C.-H., Zagade, P., Gautham, B., Allen, J.
K., and Mistree, F., “A Goal-Oriented, Sequential, Inverse Design Method for
the Horizontal Integration of a Multi-Stage Hot Rod Rolling System,” ASME J.
Mech. Des., 139(3), p. 031403.

Nellippallil, A. B., Song, K. N., Goh, C.-H., Zagade, P., Gautham, B.,
Allen, J. K., and Mistree, F., “A Goal Oriented, Sequential Process Design
of a Multi-Stage Hot Rod Rolling System,” ASME Paper No. DETC2016-
59402.

Nellippallil, A. B., Vignesh, R., Allen, J. K., Mistree, F., Gautham, B. P.,
and Singh, A. K., 2017, “A Decision-Based Design Method to Explore
the Solution Space for Microstructure After Cooling Stage to Realize the
End Mechanical Properties of Hot Rolled Product,” Fourth World Congress
on Integrated Computational Materials Engineering (ICME 2017), Ypsilanti,
MI, May 21-25, pp. 353-363.

Transactions of the ASME

Downloaded From: http://asmedigitalcollection.asme.org/ on 07/05/2018 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use

https://www.sencha.com/products/gxt/#overview
https://www.sencha.com/products/gxt/#overview
http://www.gwtproject.org/overview.html
http://www.gwtproject.org/overview.html
https://www.adobe.com/devnet/flex.html
https://www.adobe.com/devnet/flex.html
http://www.json.org/
http://www.json.org/
https://protegewiki.stanford.edu/wiki/Protege_3.5_Release_Notes
https://protegewiki.stanford.edu/wiki/Protege_3.5_Release_Notes
http://dx.doi.org/10.1007/978-3-319-48194-4_45
http://dx.doi.org/10.1115/DETC2017-67570
http://dx.doi.org/10.1115/1.4035555
http://dx.doi.org/10.1115/1.4035555
http://dx.doi.org/10.1115/DETC2016-59402
http://dx.doi.org/10.1007/978-3-319-57864-4_33

	s1
	aff1
	l
	s2
	s2A
	s2B
	s2C
	1
	s3
	s3A
	s3B
	s3B1
	3
	2
	s3B2
	s3B3
	FD1
	s3C
	s3C1
	4
	s3C2
	s3C3
	s4
	5
	6
	s5
	8
	7
	s5A
	1
	s5A
	s5B
	9
	10
	s5C
	11
	s6
	12
	13
	14
	2
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43

